
1 Introduction

%---

%-- A REACTIVE BUFFER - Case Study -

%-- Action Refinement: controller and ring partitions -

%-- Example extracted from the paper "A Refinement Strategy for Circus" -

%---

You must always include the circus toolkit, and also check inside it to see
the LaTeX commands the parser recognises (or to create your own commands)

2 Channels

Section name is to be the same as the name of the file, is possible. It helps IDEs

section buffer refinement multienv parents circus toolkit

Z paragraphs can be defined at top level

maxbuff ,maxring : N

CSP paragraphs can be defined at top-level

channel input , output : N

channel write, read : (1 . . maxring)× N

channel read 1 : (1 . . maxring)

channel read 2 : N

With \CircusDeclSummary you can create a summary of declarations

3 Buffer

Unfortunately boxed processes (those spread across multiple begin/end Circus)
are not yet available. You need to define your processes within one environment
only. The only real problem is for axiomatic definitions (that I am looking into
now). Schemas can be given horizontally.

A circus environment starts the process context

process BufferMultiEnv =̂ begin

1

Declarations This Section Globally
Unboxed items 5 5
Axiomatic definitions 1 1
Generic axiomatic defs. 0 0
Schemas 0 0
Generic schemas 0 0
Total 6 6

Table 1: Summary of Circus declarations for Section 2.

Z paragraphs within a process context are local to that process. They can
be used within the process’ actions but are unknown outside the process. That
means names might be repeated, so long as they are globally unique, as well as
locally unique (i.e. variable x can be declared globally, and within a process
P and another Q with different types. You cannot declare a process named x ,
though, as this would duplicate the name x globally).

ControllerState
cache : N
size : 0 . . maxbuff
ringsize : 0 . . maxring
top, bot : 1 . . maxring

(ringsize mod maxring) = ((top − bot) mod maxring)
ringsize = size − 1

Schemas can be given in multiple horizontal paragraph within a single Z
environment.

RingState == [ring : seqN | # ring = maxring]
CBufferState == (ControllerState ∨ RingState)

Circus state is marked accordingly within a circusaction environment

state CBufferState

ControllerInit
ControllerState ′; RingState ′

size ′ = 0
bot ′ = 1
top′ = 1

2

CacheInput
∆ControllerState
ΞRingState
x? : N

(size = 0) ∧ (size ′ = 1)
(cache ′ = x?) ∧ (bot ′ = bot) ∧ (top′ = top)

StoreInput
∆CBufferState
x? : N

(0 < size) ∧ (size < maxbuff)
(size ′ = size + 1) ∧ (cache ′ = cache)
(bot ′ = bot) ∧ (top′ = (top mod maxring) + 1)
ring ′ = ring ⊕ {top 7→ x?}

StoreInputController
∆ControllerState
ΞRingState

(0 < size) ∧ (size < maxbuff)
(size ′ = size + 1) ∧ (cache ′ = cache)
(bot ′ = bot) ∧ (top′ = (top mod maxring) + 1)

Actions, and other Circus declarations must use \circdef instead of \defs
or == from Z. This is needed to avoid parsing ambiguities with the Z grammar.
One can use tabulation and blocks (see .tex file).

Because guards are Z predicates, and predicates can be parenthesised, we
need a different token for disambiguation as well. So, every guard requires a
\lcircguard pred \rcircguard \circguard A and it typesets as (pred)NA.
Other similar marker-tokens are used for disambiguation.

Like for variable names, channel names can accept ? or ! or ′. So, hard
space is needed to indicate this is input prefix: you must type input~?x instead
of simply input?x, and similarly for other strokes. Restricting channel names
not to have strokes (i.e. input~?x? for the input on channel named x?) is not
straightforward (i.e. such names are in context because of the Z type rules for
inputs), and it does not solve the problem anyway.

Moreover, also notice the extra parenthesis within the input prefixing. This
is important in this context because of potential precedence confusion to the

3

parser. They keep the variable x in scope for the StoreInput schema, say.

InputController =̂

(size < maxbuff)N (input ?x−→
(((size = 0)N (CacheInput))
@
((size > 0)N write.top !x −→ (StoreInputController)))

)

CInput =̂

(size < maxbuff)N (input ?x−→
(((size = 0)N (CacheInput))
@
((size > 0)N (StoreInput)))

)

NoNewCache
∆ControllerState
ΞRingState

size = 1
size ′ = 0 ∧ cache ′ = cache
bot ′ = bot ∧ top′ = top

Function application within Z schemas (as in Standard Z) do require hard
spaces or parenthesis (i.e. f~x or f(x)), otherwise the soft space is eaten during
lexing (i.e. f x becomes fx, which leads to a type error).

StoreNewCache
∆CBufferState

size > 1
size ′ = size − 1 ∧ cache ′ = ring bot
bot ′ = (bot mod maxring) + 1 ∧ top′ = top
ring ′ = ring

StoreNewCacheController
∆ControllerState
ΞRingState
x? : N

size > 1
size ′ = size − 1 ∧ cache ′ = x?
bot ′ = (bot mod maxring) + 1 ∧ top′ = top

4

New hard lines (\\ and \also) are option after \circdef.

OutputController =̂

(size > 0)N output !cache−→
((size > 1)N read .bot ?x −→ (StoreNewCacheController))
@
((size = 1)N (NoNewCache))

COutput =̂

(size > 0)N output !cache−→
((size > 1)N (StoreNewCache))
@
((size = 1)N (NoNewCache))

One should be careful with the precedences. See the file process.tex in the
type checker tests directory for this, and then properly include the parenthesis.
See the Z standard precedence table for Z, and FDR manual for CSP precedence.
Sequential composition is not just normal semicolon (;). This creates too many
conflicts with Z and we used a different unicode/LATEX symbol (;). It typesets
just like ; , however. Missing-parenthesis errors are the harder to find and the
worst in error generation!

ControllerAction =̂ (ControllerInit) ; (µ X • ((InputController @ OutputController) ; X))

StoreRingCmd
ΞControllerState
∆RingState
i? : 1 . . maxring
x? : N

ring ′ = ring ⊕ {i? 7→ x?}

StoreRing =̂ write ?i ?x −→ (StoreRingCmd)
NewCacheRing =̂ read ?i !(ring i)−→ Skip

RingAction =̂ µ X • ((StoreRing @ NewCacheRing) ; X)

• (ControllerAction
J{size, ringsize, cache, top, bot} | {|write, read |} | {ring}K

RingAction)

\{|write, read |}

5

end

Declarations This Section Globally
Unboxed items 4 9
Axiomatic definitions 0 1
Generic axiomatic defs. 0 0
Schemas 9 9
Generic schemas 0 0
Total 13 19

Table 2: Summary of Circus declarations for Section 3.

6

