
1 Introduction

This is a specification of a simple scheduler and assembler. The system contains
a set of registers and a block of memory. Processes can be created, with each
containing a sequence on instructions that are executed on the system. The
instruction format is a simplified format of the Intel x86 architecture. Processes
are scheduled based on the credit system that is found in the Linux 2.0 kernel.

2 Stack

This specification was written as a test spec for the CZT project. As a result,
there are parts that may appear to be specified in a strange way - this is to test
out the tools on a large set of Z.

sectionStack parents standard toolkit

A generic stack.

Stack [X] == [stack : seqX]
InitStack [X] == [Stack [X] | stack = ∅]

PushStack [X]
∆Stack [X]
x? : X

stack ′ = stack a 〈x?〉

PopStack [X]
∆Stack [X]
x ! : X

stack ′ a 〈x !〉 = stack

Ok, lets see the value of 3 unboxed items in Section 2!

3 Definitions

sectionDefinitions parents standard toolkit

1

Declarations This Section Globally
Unboxed items 3 3
Axiomatic definitions 0 0
Generic axiomatic defs. 0 0
Schemas 0 0
Generic schemas 2 2
Total 5 5

Table 1: Summary of Z declarations for Section 2.

Firstly, we define some basic types and functions that are used throughout
the specification.

singleton is the set of all sets whose size is less than or equal to 1. This is
included only to have a generic axiom definition.

relation(singleton)

[X]
singleton : P(PX)

∀ s : PX • singleton s ⇔ # s ≤ 1

The basic type of this system is a word, which specifically, is an unsigned
octet. An unsigned word is used so references to memory etc a 1-relative.

WORD == 0 . . 255

Then, we define the size of the memory block, and give it a value for anima-
tion purposes.

mem size : WORD

mem size = 100

A LABEL is used to label instructions for jump instructions etc, although
’jump’ hasn’t been specified yet.

[LABEL]

Now we define the different instructions, as well as their operands. A
CONSTANT is used both as a constant value, as well as a memory reference
for load and store instructions.

2

INST NAME ::=
add | sub | divide | mult | push | pop | load | store | loadConst | print

OPERAND ::= AX | BX | CX | DX | constant〈〈WORD〉〉
REGISTER == {AX ,BX ,CX ,DX }
CONSTANT == OPERAND \ REGISTER

An instruction is specified as a instruction name, a sequence of operands,
and optionally, a label.

Instruction
label : PLABEL
name : INST NAME
params : seqOPERAND

singleton label

Declarations This Section Globally
Unboxed items 9 12
Axiomatic definitions 1 1
Generic axiomatic defs. 1 1
Schemas 1 1
Generic schemas 0 2
Total 12 17

Table 2: Summary of Z declarations for Section 3.

4 System

sectionSystem parentsDefinitions,Stack

The system consists of a set of registers, and a block of memory. There is
also a buffer for displaying output.

REGISTERS == REGISTER→OPERAND
MEMORY == 1 . . mem size 7→WORD

3

System
registers : REGISTERS
memory : MEMORY
output : seqWORD

Initially, all registers and memory hold the minimum WORD value. The
output buffer is empty.

InitSystem
System

registers = {r : REGISTER • r 7→ constant(min(WORD))}
memory = {m : 1 . . mem size • m 7→min(WORD)}
output = 〈〉

The system can have arithmetic and memory instructions.

Arith Inst == [Instruction | # params = 2 ∧ params(1) ∈ REGISTER]
Add Inst == [Arith Inst | name = add]
Sub Inst == [Arith Inst | name = sub]
Mult Inst == [Arith Inst | name = mult]
Div Inst == [Arith Inst | name = divide]

Memory Inst == [Instruction | # params = 2 ∧ params(1) ∈ REGISTER
∧ params(2) ∈ CONSTANT]

Load Inst == [Memory Inst | name = load]
LoadConst Inst == [Memory Inst | name = loadConst]
Store Inst == [Memory Inst | name = store]

A print instruction prints the value of a register.

Print Inst == [Instruction | # params = 1]

val maps constants to their value, and dereference dereferences the value of
a register, transitively if required.

val : CONSTANT →WORD
dereference : OPERAND × REGISTERS →WORD

∀ c : CONSTANT •
(∃n : WORD • c = constant(n) ∧ val(c) = n)

∀ a : OPERAND ; r : REGISTERS •
dereference(a, r) =

if a ∈ REGISTER then dereference(r(a), r) else val(a)

4

The specification of the arithmetic instructions.

Add
∆System
Add Inst

∃ o1 == dereference(params(1), registers);
o2 == dereference(params(2), registers) •
registers ′ = registers ⊕ {params(1) 7→ constant(o1 + o2)}

memory ′ = memory
output ′ = output

Sub
∆System
Sub Inst

∃ o1 == dereference(params(1), registers);
o2 == dereference(params(2), registers) •
registers ′ = registers ⊕ {params(1) 7→ constant(o1 − o2)}

memory ′ = memory
output ′ = output

Mult
∆System
Mult Inst

∃ o1 == dereference(params(1), registers);
o2 == dereference(params(2), registers) •
registers ′ = registers ⊕ {params(1) 7→ constant(o1 ∗ o2)}

memory ′ = memory
output ′ = output

Div
∆System
Div Inst

∃ o1 == dereference(params(1), registers);
o2 == dereference(params(2), registers) •
registers ′ = registers ⊕ {params(1) 7→ constant(o1 div o2)}

memory ′ = memory
output ′ = output

5

The load operation loads a constant from memory. The second parameter
is an index to the memory location from which the constant is loaded.

Load
∆System
Load Inst

∃ o2 == val(params(2)) •
registers ′ = registers⊕

{params(1) 7→ constant(memory(o2))}
memory ′ = memory
output ′ = output

loadConst loads a constant into a register. The second parameter the con-
stant to be loaded.

Load Const
∆System
LoadConst Inst

∃ o2 == val(params(2)) •
registers ′ = registers ⊕ {params(1) 7→ constant(o2)}

memory ′ = memory
output ′ = output

Store the value of a register in memory.

Store
∆System
Store Inst

∃ o1 == dereference(params(1), registers);
o2 == val(params(2)) •

memory ′ = memory ⊕ {o2 7→ o1}
registers ′ = registers
output ′ = output

Print
ΞSystem
Print Inst

output ′ = output a 〈dereference(params(1), registers)〉
registers ′ = registers
memory ′ = memory

6

Stack Inst == [Instruction | # params = 1]
Push Inst == [Stack Inst | name = push]
Pop Inst == [Stack Inst | name = pop]

The specification of the stack instructions on the system.

Push0
ΞSystem
PushStack [WORD]
Push Inst

x? = dereference(params(1), registers)

Pop0
∆System
PopStack [WORD]
Pop Inst

registers ′ = registers ⊕ {params(1) 7→ constant(x !)}
memory ′ = memory
output ′ = output

Push == Push0 ¹ [System; Stack [WORD]]
Pop == Pop0 ¹ [System; Stack [WORD]]

This executes an instruction on the on the system. inst? is the instruction
to execute, and base? is the base memory value of the executing process. If the
instruction is a load or store instruction, the memory reference must offset
using the base value.

7

exec inst
∆System
inst? : Instruction
base? : 1 . . mem size

∃ label : PLABEL; name : INST NAME ; params : seqOPERAND |
label = inst?.label ∧ name = inst?.name ∧
params = inst?.params •

Add ∨ Sub ∨ Mult ∨ Div ∨
Print ∨ Load Const ∨
name ∈ {load , store} ⇒ (∃ p : seqOPERAND |

p = 〈params(1),
constant(val(params(2)) + base?)〉 •

Load [p/params] ∨ Store[p/params])

Declarations This Section Globally
Unboxed items 19 31
Axiomatic definitions 1 2
Generic axiomatic defs. 0 1
Schemas 13 14
Generic schemas 0 2
Total 33 50

Table 3: Summary of Z declarations for Section 4.

5 Scheduler

sectionScheduler parentsSystem

This part of the specification is the scheduler.
Here, we declare the set of process IDs, the priority values, and the default

number of credits a process receives when it is created.

Pid == N
Priority == - 19 . . 19
Default Credits == 10

The possible status that a process can hold.

Status ::= pWaiting | pReady | pRunning

8

A process consists of a process ID, a status, a number of credits, and a
priority. Each process has a sequence of instructions to be executed on the
assembler, with a pointer to the current instruction. The memory that a process
can occupy is between a base and limit value. Instructions must only access
memory with a value less than the limit, but they know nothing about the base
value - this is added onto the memory index provided by the instruction when
an instruction is executed. Each procss also contains a stack and values for all
registers, which are used to store values when the process is suspended.

Processes
pids : PPid
status : Pid 7→ Status
credits : Pid 7→ N
priority : Pid 7→ Priority
instructions : Pid 7→ (seq Instruction)
inst pointer : Pid 7→ N1

base, limit : Pid 7→WORD
pregisters : Pid 7→ REGISTERS
pstack : Pid 7→ Stack [WORD]

pids = dom(status) = dom(credits) = dom(priority) =
dom(instructions) = dom(inst pointer) = dom(base) =
dom(limit) = dom(pstack)

∀ pid : pids • inst pointer(pid) ≤ #(instructions(pid))
∀ pid : pids • base(pid) + limit(pid) ≤ mem size

The sort function takes the credits and priorities of all processes, and returns
a sequence of process IDS sorted firstly by their credits (the more credits a
process has, the higher preference they get), and if the credits are equal, then
their priority. If the priority is equal, then the order is non-deterministic.

sort : (Pid 7→ N)× (Pid 7→ Priority) 7→ iseqPid

sort = (λ credits : (Pid 7→ N); priority : (Pid 7→ Priority) |
dom(credits) = dom(priority) •
(µ s : iseqPid | ran(s) = dom(credits) ∧

(∀ i : 1 . . # s − 1 •
credits(s(i)) > credits(s(i + 1)) ∨
(credits(s(i)) = credits(s(i + 1)) ∧
priority(s(i)) > priority(s(i)))) • s))

To interrupt a process during execution, the kernel must be in kernel mode.

Mode ::= user | kernel

9

For the scheduler, we track which mode the operating system is in, as well
as declaring three “secondary” variables, waiting , running , and ready , to keep
the sets of waiting running, and ready variables respecitvely. In fact, ready
is a sequence, and is ordered based on the credits that each process has. A
process with more credits will have a higher priority. This is fair scheduling,
because at each timer interrupt (the tick operation specified below), the current
process losses one credit, therefore, process spending a lot of time executing will
eventually have a low priority.

Scheduler
Processes
System
Stack [WORD]
mode : Mode
waiting , running : PPid
ready : iseqPid

running ≤ 1
waiting ∩ running ∩ ran ready = ∅
waiting ∪ running ∪ ran ready = pids
waiting = {p : pids | (status ∼)(pWaiting) = p}
running = {p : pids | (status ∼)(pRunning) = p}
ready = sort((waiting ∪ running)−C credits,

(waiting ∪ running)−C priority)
∀ r : ran(ready) • status(r) = pReady
∀ r : running • credits(r) > 0

This uses semicolons as conjunctions for predicates, which conforms to the
grammar in the ISO standard, but according to the list of differences between
ZRM and ISO Z on Ian Toyn’s website, semicolons can no longer be used to
conjoin predicates.

InitScheduler
Scheduler
InitStack [WORD]
InitSystem

pids = ∅ ; status = ∅ ; priority = ∅
credits = ∅ ; instructions = ∅ ; inst pointer = ∅
waiting = ∅ ; running = ∅ ; ready = 〈〉
base = {} ; limit = {} ; pregisters = {}
mode = user

newProcess creates a new process with a unique process ID and a specified
priority, and places this new process on the ready queue.

10

create new process
∆Scheduler
ΞSystem
priority? : Priority
instructions? : seq Instruction
base?, limit? : WORD
pid ! : Pid

pid ! 6∈ pids
status ′ = status ∪ {pid ! 7→ pReady}
credits ′ = credits ∪ {pid ! 7→Default Credits}
priority ′ = priority ∪ {pid ! 7→ priority?}
instructions ′ = instructions ∪ {pid ! 7→ instructions?}
inst pointer ′ = inst pointer ∪ {pid ! 7→ 1}
base ′ = base ∪ {pid ! 7→ base?}
limit ′ = limit ∪ {pid ! 7→ limit?}
pregisters ′ =

pregisters ∪ {pid ! 7→ {r : REGISTER •
r 7→ constant(min(WORD))}}

pstack ′ = pstack ∪ {pid ! 7→ (〈|stack == 〈〉|〉)}
pids ′ = pids ∪ {pid !}

We define a schema that contains only the variables that do not change when
a reschedule occurs.

RescheduleChange ==
Scheduler \ (status, running , ready ,waiting , credits)

A reschedule occurs when all ready processes have no credits. Every process,
not just the ready processes, have their credits re-calculated using the formula
credits = credits/2 + priority . This implies that the ready process with the
highest priority will be the next process executed.

reschedule
∆Scheduler
ΞRescheduleChange

ready 6= ∅
∀ r : ran(ready) • credits(r) = 0 ⇒

credits ′ = {p : pids • p 7→ (credits(p) div 2) + priority(p)} ∧
status ′ = status

¬ (∀ r : ran(ready) • credits(r) = 0) ⇒
status ′ = status ⊕ {head(ready) 7→ pRunning} ∧
credits ′ = credits

11

We declare a new schema that contains only the state variables that do not
change when a status change occurs.

StatusChange == Scheduler \
(status, running ,waiting , ready , registers, pregisters, pstack)

Interrupts the currently executing process if the new process is of a higher
priority then the current process and the kernel is in kernel mode.

interrupt
∆Scheduler
ΞStatusChange
create new process

mode = kernel
running = ∅ ∨ (∃ p : running • priority? ≥ priority(p))
∃ r : running •

status ′ = status ⊕ {pid ! 7→ pRunning , r 7→ pReady} ∧
pregisters ′ = pregisters ⊕ {r 7→ registers} ∧
θ Stack ′ = pstack(r)

registers ′ = pregisters(pid !)

Remove the currently running process and put it back in the ready queue.

remove running process
∆Scheduler
ΞStatusChange

∃ pid == (µ r : running) •
status ′ = status ⊕ {pid 7→ pReady} ∧
pregisters ′ = pregisters ⊕ {pid 7→ registers} ∧
pstack ′ = pstack ⊕ {pid 7→ θ Stack ′}

A process becomes blocked if it is waiting on a resource such a an IO device,
or waiting on another process

block process == remove running process # reschedule

We declare a schema containing only the variables that change for an un-
block.

UnblockProcessChange == Scheduler \ (status, running , ready ,waiting)

12

Unblocks a process that is blocked by another process.

unblock process
∆Scheduler
ΞUnblockProcessChange
pid? : Pid

pid? ∈ pids
status(pid?) = pWaiting
running = ∅⇔ status ′ = status ⊕ {pid? 7→ pRunning}
running 6= ∅⇔ status ′ = status ⊕ {pid? 7→ pReady}

Remove a process from the system

remove process
∆Scheduler
ΞStack [WORD]
ΞSystem
pid? : Pid

pid? ∈ pids
pids ′ = pids \ {pid?}
status ′ = {pid?} −C status
credits ′ = {pid?} −C credits
priority ′ = {pid?} −C priority
instructions ′ = {pid?} −C instructions
inst pointer ′ = {pid?} −C inst pointer
base ′ = {pid?} −C base
limit ′ = {pid?} −C limit
pregisters ′ = {pid?} −C pregisters
pstack ′ = {pid?} −C pstack

Update the details in the process table when each instruction is executed, as
well as communicate the current instruction and the base value for the current
process.

ChangeInstPointer == Scheduler \ (inst pointer)

13

update process table
∆Scheduler
inst ! : Instruction
base! : WORD

running 6= ∅
(∃ pid == (µ r : running) •

inst ! = head(instructions(pid)) ∧
base! = base(pid) ∧
(inst pointer(pid) = #(instructions(pid)) ⇒

remove process[pid/pid?]) ∧
inst pointer(pid) < #(instructions(pid)) ⇒

inst pointer ′ =
inst pointer ⊕ {pid 7→ inst pointer(pid) + 1})

θ ChangeInstPointer = θ ChangeInstPointer ′

next == exec inst >> update process table #
([∆Scheduler | running = ∅] ∧ reschedule) ∨
([ΞScheduler | running 6= ∅])

idle0 == ¬ prenext

idle
ΞScheduler
inst? : Instruction
base? : WORD

idle0

tick == next ∨ idle

`?(∀n : N1 • n > 0)

[X]`?∀ x : PX • # x ≤ 1 ⇔ singleton x

theorem PreconditionCheck
∀Scheduler • pre update process table

14

Declarations This Section Globally
Unboxed items 21 52
Axiomatic definitions 1 3
Generic axiomatic defs. 0 1
Schemas 11 25
Generic schemas 0 2
Total 33 83

Table 4: Summary of Z declarations for Section 5.

15

